图1 断裂螺栓宏观形貌
1. 检验与结果
【资料图】
(1)宏观分析
体视显微镜下观察两螺栓断口,宏观形貌相似,断口凹凸不平,断面粗糙,存在明显的腐蚀痕迹,其中2#断口腐蚀程度更严重;源区位于螺纹根部表面,为线源起裂,扩展区呈放射状,如图2所示。
图 2
(2)断口扫描电镜分析
采用扫描电镜对两个螺栓断口进行微观形貌观察,1#断口和2#断口源区及其附近扩展区均呈沿晶+腐蚀形貌,沿晶区域最大深度约5mm,可见较多沿晶二次裂纹,晶面可见微孔及“鸡爪纹”,部分晶面可见腐蚀痕迹,如图3、图4所示。图3 源区沿晶形貌
图4 源区晶面腐蚀形貌
(3)能谱成分分析
对断面进行能谱分析,未腐蚀晶面含有Fe、Cr(1.3%)、Mn(0.8%)元素,主合金元素及含量与40Cr牌号相符,腐蚀区域除基体元素外还含有较高的O元素,能谱图如图5所示。图5 断面能谱分析
原材料复验成分及力学性能如表1、表2所示。 表1 原材料40Cr成分复验情况汇总表2 原材料力学性能复验情况汇总(4)金相检验
从2#螺栓断口区域截取部分试样进行金相分析,断口剖面呈锯齿状,可见腐蚀产物及较多沿晶分叉裂纹,个别裂纹内部可见腐蚀产物,如图6所示。图6 断口表面腐蚀及沿晶分叉裂纹形貌
浸蚀后观察,断口区域组织与其他区域组织未见明显差异,均为马氏体组织,如图7所示。图7 显微组织形貌
螺栓外表面可见断续分布的镀锌层,厚度7~8μm,符合设计要求(7~12μm),镀层形貌如图8所示。 (a) (b)图8 表面镀层形貌
(5)硬度测试
对2#金相试样进行显微硬度测试,测试结果为460HV0.3、60HV0.3、465HV0.3、463HV0.3、465HV0.3,平均463HV0.3,换算为约46.2HRC,远高于设计要求,根据GB/T 1172—1999标准换算为抗拉强度大于1400MPa。对1#螺栓端面进行洛氏硬度测试,结果为47.8HRC、48.8HRC、45.5HRC、45.2HRC、48.8HRC,平均47.2HRC,换算为抗拉强度大于1500MPa。
2.结果分析与讨论
(1)能谱分析结果表明螺栓所用材料的主成分未见异常,原材料入厂复验成分及力学性能均符合GB/T3077要求。
(2)金相分析结果表明螺栓材料组织为马氏体组织,材料硬度大于46HRC,远高于设计要求,应是热处理工艺控制不当所致。
(3)螺栓表面存在镀锌层,厚度符合设计要求。QJ450B—2005标准规定,直径大于10mm、抗拉强度大于1300MPa的高强度螺栓禁用镀锌工艺,由于该强度下材料具有高的氢脆敏感性,极易发生氢脆。
(4)两件螺栓均断于螺纹段,断裂部位未见明显塑性变形痕迹,断口表面存在不同程度的腐蚀痕迹。两断口宏观、微观形貌较为相似,源区位于螺纹根部表面,为线源起裂,源区及扩展区微观均呈沿晶+腐蚀形貌,可见较多沿晶二次裂纹,晶面可见微孔及“鸡爪纹”,部分晶面存在腐蚀痕迹。根据以上形貌特征判断,两件螺栓的断裂模式均为脆性延迟断裂,机理为氢脆及应力腐蚀。
3.结语综合分析认为,两件螺栓的断裂模式均为脆性延迟断裂,机理为氢脆及应力腐蚀。螺栓在使用过程中螺纹根部首先产生氢损伤,后续使用过程中在氢脆及应力腐蚀的共同作用下发生扩展并断裂。发生断裂的原因应与热处理工艺控制不当导致材料硬度过高、具有较高的氢脆敏感性有关。来源:热处理生态圈
编辑:朱光明 校对:孙超审核:吕东显 媒体合作: 13501198334第21届北京国际热处理展览会
定档2023年6月1~3日
招展火热进行中
标签: